from transformers import AutoModel import torch model_name = "openbmb/UltraRAG-Embedding" model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to("cuda") # you can use flash_attention_2 for faster inference # model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda") model.eval() queries = ["MiniCPM-o 2.6 A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone"] passages = ["MiniCPM-o 2.6 is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip-400M, Whisper-medium-300M, ChatTTS-200M, and Qwen2.5-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.6, and introduces new features for real-time speech conversation and multimodal live streaming."] embeddings_query_dense, embeddings_query_sparse = model.encode_query(queries, return_sparse_vectors=True, max_length=8192, dense_dim=1024) embeddings_doc_dense, embeddings_doc_sparse = model.encode_corpus(passages, return_sparse_vectors=True) dense_scores = (embeddings_query_dense @ embeddings_doc_dense.T) print(dense_scores.tolist()) # [[0.6512398719787598]] print(model.compute_sparse_score_dicts(embeddings_query_sparse, embeddings_doc_sparse)) # [[0.27202296]] dense_scores, sparse_scores, mixed_scores = model.compute_score(queries, passages) print(dense_scores) # [[0.65123993]] print(sparse_scores) # [[0.27202296]] print(mixed_scores) # [[0.73284686]]