import torch from sentence_transformers import SentenceTransformer model_name = "openbmb/UltraRAG-Embedding" model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={"torch_dtype": torch.float16}) # you can use flash_attention_2 for faster inference # model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={"attn_implementation": "flash_attention_2", "torch_dtype": torch.float16}) queries = ["中国的首都是哪里?"] # "What is the capital of China?" passages = ["beijing", "shanghai"] # "北京", "上海" INSTRUCTION = "Query: " embeddings_query = model.encode(queries, prompt=INSTRUCTION) embeddings_doc = model.encode(passages) scores = (embeddings_query @ embeddings_doc.T) print(scores.tolist()) # [[0.40356746315956116, 0.36183440685272217]]