# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CpmBee.""" import json import os from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np from numpy.typing import NDArray from typing_extensions import TypedDict from transformers.tokenization_utils import PaddingStrategy, PreTrainedTokenizer, TensorType from transformers.tokenization_utils_base import AddedToken, BatchEncoding, TextInput, TruncationStrategy from transformers.utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/blob/main/vocab.txt", "openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/blob/main/vocab.txt", "openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/blob/main/vocab.txt", "openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/blob/main/vocab.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openbmb/cpm-bee-10b": 4096, "openbmb/cpm-bee-5b": 4096, "openbmb/cpm-bee-2b": 4096, "openbmb/cpm-bee-1b": 4096, } class _PrevExtTableStates(TypedDict): ext_table: Dict[int, str] token_id_table: Dict[str, Dict[int, int]] CPMBeeInputType = Union[str, Dict[str, "CPMBeeInputType"]] def rel_to_bucket(n_up: int, n_down: int, max_depth: int = 8): ret = n_up * max_depth + n_down if ret == 0: return ret else: # bucket 1 is reserved for incontext samples return ret + 1 class _DictTree(TypedDict): value: str children: List["_DictTree"] depth: int segment_id: int need_predict: bool class CpmBeeTokenizer(PreTrainedTokenizer): """ Construct a CPMBee tokenizer. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `""`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `""`): The end of sequence token. line_token (`str`, *optional*, defaults to `"\n"`): The line token. space_token (`str`, *optional*, defaults to `" "`): The space token. unk_token (`str`, *optional*, defaults to `""`): The unknown token. mask_token (`str`, *optional*, defaults to `""`): The mask token. pad_token (`str`, *optional*, defaults to `""`): The token used for padding. padding_side (`str`, *optional*, defaults to `"left"`): The padding side. CPM-Bee will use left padding by default. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names: List[str] = [ "input_ids", "attention_mask", "input_id_sub", "position", "context", "sample_ids", "num_segments", "segment", "segment_rel_offset", "segment_rel", ] add_prefix_space = False def __init__( self, vocab_file, bos_token="", eos_token="", line_token="\n", space_token=" ", unk_token="", mask_token="", pad_token="", padding_side="left", **kwargs, ): super().__init__( bos_token=bos_token, eos_token=eos_token, line_token=line_token, space_token=space_token, unk_token=unk_token, mask_token=mask_token, pad_token=pad_token, padding_side=padding_side, **kwargs, ) self.encoder: Dict[str, int] = {} with open(vocab_file, "r", encoding="utf-8") as reader: for token in reader.readlines(): token = token.rstrip("\n") if len(token) == 0: continue self.encoder[token] = len(self.encoder) self.encoder[" "] = self.encoder[""] self.encoder["\n"] = self.encoder[""] del self.encoder[""] del self.encoder[""] self.decoder = {v: k for k, v in self.encoder.items()} self._max_word_len = max([len(x) for x in self.encoder.keys()]) self.cpmbee_special_tokens = {k: v for k, v in self.encoder.items() if k.startswith("<") and k.endswith(">")} self.ext_table: Dict[int, str] = {} self.ext_table_rev: Dict[str, int] = {} self.token_id_table: Dict[str, Dict[int, int]] = {} self.ext_special_tokens = [] self.ext_args_for_model = [ "input_id_subs", "input_pos", "context", "segment_ids", "segment_rel_offset", "segment_rel", "sample_ids", "num_segments", "predict_segments", "answer_placeholders", "ext_table", "token_id_table", ] @property def bod_token_id(self): return self.encoder[self.bod_token] @property def eod_token_id(self): return self.encoder[self.eod_token] @property def newline_id(self): return self.encoder[self.line_token] @property def vocab_size(self) -> int: return len(self.encoder) def __len__(self): """ Size of the full vocabulary with the added tokens. """ return self.vocab_size + len(self.added_tokens_encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def get_piece(self, text: str) -> str: """ Match with maximum length. """ len_text = len(text) for i in range(len(text)): sub = text[: len_text - i] if (sub in self.encoder) or (sub in self.added_tokens_encoder): return sub return text[0] def tokenize(self, text: TextInput, **kwargs) -> List[str]: r""" Override the `tokenize` to meet the needs of CPMBee: 1. Mark the special token with `<` and `>`. The `<>` will be ignored. 2. Split sentences by the marked special tokens. 3. Record the marked special token by `ext_table` and `ext_table_rev`. 4. Tokenize the sentence without special tokens. """ for_cpmbee = kwargs.get("for_cpmbee", False) all_special_tokens_extended = { str(t): t for t in self.all_special_tokens_extended if isinstance(t, AddedToken) } sentence_split = [""] is_special_token = False for i, c in enumerate(text): if is_special_token: if c == "<": tail = sentence_split.pop(-1) sentence_split[-1] += tail sentence_split.append(c) is_special_token = False elif c == ">": # end of special token sentence_split[-1] += c if sentence_split[-1] == "<>": continue is_special_token = False sentence_split.append("") else: sentence_split[-1] += c else: if c == "<": is_special_token = True sentence_split.append(c) else: sentence_split[-1] += c if is_special_token: tail = sentence_split.pop(-1) sentence_split[-1] += tail output_tokens = [] for i, part in enumerate(sentence_split): if (i & 1) == 1: # special token output_tokens.append(part) if for_cpmbee and (part not in self.encoder) and (part not in self.ext_table_rev): self.ext_table_rev[part] = len(self.ext_table_rev) + self.vocab_size self.ext_table[self.ext_table_rev[part]] = part else: output_tokens.extend(self._tokenize(part, for_cpmbee=for_cpmbee)) # drop spaces for i, token in enumerate(output_tokens): if token in self.added_tokens_encoder: token = all_special_tokens_extended.get(token, None) left = output_tokens[i - 1] if i > 0 else None right = output_tokens[i + 1] if i < len(output_tokens) - 1 else None if isinstance(token, AddedToken): if token.rstrip and right: # A bit counter-intuitive but we strip the left of the string # since tok_extended.rstrip means the special token is eating all white spaces on its right output_tokens[i + 1] = right.lstrip() # Strip white spaces on the left if token.lstrip and left: output_tokens[i - 1] = left.rstrip() # Opposite here else: if right: output_tokens[i + 1] = right.lstrip() if left: output_tokens[i - 1] = left.rstrip() skipped_tokens = [] for token in output_tokens: if not token: continue else: skipped_tokens.append(token) return skipped_tokens def _tokenize(self, text, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary. Do NOT take care of added tokens. Record the unk tokens and special tokens in `ext_table` and `ext_table_rev`. """ for_cpmbee = kwargs.get("for_cpmbee", False) output_tokens = [] part_st = 0 last_unk = None while part_st < len(text): piece = self.get_piece(text[part_st:]) if piece in self.encoder or self.added_tokens_encoder: if last_unk is None: output_tokens.append(piece) else: if for_cpmbee and (last_unk not in self.ext_table_rev): self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size self.ext_table[self.ext_table_rev[last_unk]] = last_unk output_tokens.append(last_unk) output_tokens.append(piece) last_unk = None else: if last_unk is None: last_unk = piece else: last_unk += piece part_st += len(piece) if last_unk is not None: # part end with UNK if for_cpmbee and (last_unk not in self.ext_table_rev): self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size self.ext_table[self.ext_table_rev[last_unk]] = last_unk output_tokens.append(last_unk) return output_tokens def check(self, token): return token in self.encoder def convert_tokens_to_string(self, tokens: List[str]) -> str: return "".join(tokens) def _convert_token_to_id(self, token: str): """Converts a token (str) in an id using the vocab and ext_table.""" if token in self.encoder: return self.encoder.get(token) elif token in self.ext_table_rev: return self.ext_table_rev[token] elif token in self.added_tokens_encoder: return self.added_tokens_encoder[token] else: return self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab and ext_table.""" if index in self.ext_table: return self.ext_table[index] elif index in self.added_tokens_decoder: return self.added_tokens_decoder[index] else: if index >= 0: return self.decoder[index] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory index = 0 self.encoder[""] = self.encoder["\n"] del self.encoder["\n"] self.encoder[""] = self.encoder[" "] del self.encoder[" "] with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.encoder.items(), key=lambda x: x[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def __call__(self, text, *args, **kwargs): r""" CPMBee `call` method will use `_tokenize_cpmbee` when the input type is dict. """ if isinstance(text, dict): return self._batch_tokenize_cpmbee([text], *args, **kwargs) elif isinstance(text, (list, tuple)): if isinstance(text[0], dict): return self._batch_tokenize_cpmbee(text, *args, **kwargs) else: return super().__call__(text, *args, **kwargs) else: return super().__call__(text, *args, **kwargs) # 分词 def _tokenize_cpmbee(self, data: TextInput, *args, **kwargs) -> List[str]: """ A tokenize method to process dict data. Exclusive for CPMBee. """ if isinstance(data, str): data = json.loads(data) if not isinstance(data, Dict): raise TypeError( "CpmBeeTokenizer input data should be dict or str in dict format, but got {}".format(type(data)) ) # 1. prepare answer placeholder answer_placeholders = [] def _put_placeholder(data: Any, path: List[str] = []): if isinstance(data, dict): ret = {} for k, v in data.items(): ret[k] = _put_placeholder(v, path + [k]) return ret else: answer_placeholders.append(path) return "".format(len(answer_placeholders)) data[""] = _put_placeholder(data[""]) ( input_ids, input_id_subs, context, segment_ids, segment_rel, n_segments, table_states, ) = self.convert_data_to_id(data, shuffle_answer=False, max_depth=8) # mapping from sub to id sub_ans_map: Dict[int, int] = {} for fake_id, token_sub in table_states["token_id_table"][""].items(): token = table_states["ext_table"][fake_id] if token.startswith(""): ans_id = int(token[5:-1]) sub_ans_map[token_sub] = ans_id tmp_input_ids = [] tmp_input_sub = [] tmp_input_seg = [] # get predict segments predict_segments: List[Tuple[int, int]] = [] for i in range(input_ids.shape[0]): if context[i] == 0: if input_ids[i] == self.encoder[""]: # is ans # (segment_id, ans_id) predict_segments.append((segment_ids[i], sub_ans_map[input_id_subs[i]])) else: tmp_input_ids.append(input_ids[i]) tmp_input_sub.append(input_id_subs[i]) tmp_input_seg.append(segment_ids[i]) if len(predict_segments) == 0: raise ValueError("No answer to predict") input_ids = np.array(tmp_input_ids, dtype=np.int32) # all context input_id_subs = np.array(tmp_input_sub, dtype=np.int32) # [0, 0, 0, 0, 1, 0, 0, 2, 0, ...] context = np.full_like(tmp_input_ids, 1, dtype=np.int8) # [1, 1, 1, ...] segment_ids = np.array(tmp_input_seg, dtype=np.int32) # [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, ...] sample_ids = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, 0, ...] segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, ...] num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) # [n_seg, n_seg, n_seg, ...] input_pos = np.arange(input_ids.shape[0], dtype=np.int32) # [0, 1, 2, 3, 4, ...] return ( self.prepare_for_model( input_ids.tolist(), input_id_subs=input_id_subs.tolist(), input_pos=input_pos.tolist(), context=context.tolist(), segment_ids=segment_ids.tolist(), segment_rel_offset=segment_rel_offset.tolist(), segment_rel=segment_rel.tolist(), sample_ids=sample_ids.tolist(), num_segments=num_segments.tolist(), **kwargs, ), predict_segments, answer_placeholders, table_states["ext_table"], table_states["token_id_table"], ) def _batch_tokenize_cpmbee(self, data_lst, *args, **kwargs): """ Batched _token_cpmbee. """ device = kwargs.get("device", "cpu") return_tensors = kwargs.get("return_tensors", None) batch_outputs = {} segment_rel_pack = [] other_info = [] batch_ext_table_map: Dict[Tuple[int, int], int] = {} batch_ext_table_ids: List[int] = [] batch_ext_table_sub: List[int] = [] for data in data_lst: self.ext_table = {} self.ext_table_rev = {} self.token_id_table = {} (outputs, predict_segments, answer_placeholders, ext_table, token_id_table) = self._tokenize_cpmbee( data, truncation=None, padding=PaddingStrategy.DO_NOT_PAD.value, max_length=None, pad_to_multiple_of=None, return_attention_mask=False, return_tensors=None, ) rev_ext_table = {} for token, mp in token_id_table.items(): if token == "": continue token_id = self.encoder[token] for fake_id, token_sub in mp.items(): if token_sub > 0: if (token_id, token_sub) not in batch_ext_table_map: batch_ext_table_map[(token_id, token_sub)] = len(batch_ext_table_ids) + self.vocab_size batch_ext_table_ids.append(token_id) batch_ext_table_sub.append(token_sub) rev_ext_table[batch_ext_table_map[(token_id, token_sub)]] = ext_table[fake_id] else: rev_ext_table[token_id] = ext_table[fake_id] segment_rel_pack.append(np.array(outputs.pop("segment_rel"))) other_info.append( { "predict_segments": predict_segments, "answer_placeholders": answer_placeholders, "ext_table": rev_ext_table, } ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) max_length = max([len(item) for item in batch_outputs[self.model_input_names[0]]]) batch_size = len(batch_outputs[self.model_input_names[0]]) for i in range(batch_size): inputs = {k: v[i] for k, v in batch_outputs.items()} for k, v in inputs.items(): required_input = v needs_to_be_padded = len(required_input) != max_length if needs_to_be_padded: difference = max_length - len(required_input) batch_outputs[k][i] = [self.pad_token_id] * difference + required_input max_num_rels = 0 for rel in segment_rel_pack: max_num_rels = max(max_num_rels, rel.shape[0]) padded_rels = np.zeros((len(segment_rel_pack), max_num_rels), dtype=np.int32) for i, rel in enumerate(segment_rel_pack): padded_rels[i, : rel.shape[0]] = rel batch_outputs["segment_rel"] = padded_rels batch_outputs["batch_ext_table_ids"] = np.array(batch_ext_table_ids, dtype=np.int32) batch_outputs["batch_ext_table_sub"] = np.array(batch_ext_table_sub, dtype=np.int32) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) if return_tensors == "pt": batch_outputs = batch_outputs.to(device=device) batch_outputs["other_info"] = other_info return batch_outputs def convert_data_to_id( self, data: Any, prev_ext_states: Optional[_PrevExtTableStates] = None, shuffle_answer: bool = True, max_depth: int = 8, ): """ Parse a dict to data ids. Exclusive for CPMBee. It will 1. parse the dict to segments and get segment_rel, which for calculating of position_bias. 2. tokenize every segment. """ root: _DictTree = { "value": "", "children": [], "depth": 0, "segment_id": 0, "need_predict": False, } segments = [root] def _build_dict_tree(data: CPMBeeInputType, depth: int, need_predict: bool) -> List[_DictTree]: if isinstance(data, dict): ret_list: List[_DictTree] = [] curr_items = list(data.items()) if need_predict and shuffle_answer: access_idx = np.arange(len(curr_items)) np.random.shuffle(access_idx) curr_items = [curr_items[idx] for idx in access_idx] for k, v in curr_items: child_info: _DictTree = { "value": k, "children": [], "depth": depth, "segment_id": len(segments), "need_predict": False, # only leaves are contexts } segments.append(child_info) child_info["children"] = _build_dict_tree( v, depth + 1, need_predict or (depth == 1 and k == "") ) # elements in . ret_list.append(child_info) return ret_list else: assert isinstance(data, str), "Invalid data {}".format(data) ret: _DictTree = { "value": data, "children": [], "depth": depth, "segment_id": len(segments), "need_predict": need_predict, } segments.append(ret) return [ret] root["children"] = _build_dict_tree(data, 1, False) num_segments = len(segments) segment_rel = np.zeros((num_segments * num_segments,), dtype=np.int32) def _build_segment_rel(node: _DictTree) -> List[Tuple[int, int]]: ret: List[Tuple[int, int]] = [(node["segment_id"], node["depth"])] for child in node["children"]: sub = _build_segment_rel(child) for seg_id_1, depth_1 in sub: for seg_id_2, depth_2 in ret: n_up = min(depth_1 - node["depth"], max_depth - 1) n_down = min(depth_2 - node["depth"], max_depth - 1) segment_rel[seg_id_1 * num_segments + seg_id_2] = rel_to_bucket( n_up, n_down, max_depth=max_depth ) segment_rel[seg_id_2 * num_segments + seg_id_1] = rel_to_bucket( n_down, n_up, max_depth=max_depth ) ret.extend(sub) return ret _build_segment_rel(root) input_ids: List[int] = [] input_id_subs: List[int] = [] segment_bound: List[Tuple[int, int]] = [] if prev_ext_states is not None: self.ext_table = prev_ext_states["ext_table"] self.token_id_table = prev_ext_states["token_id_table"] for seg in segments: # tokenize tokens = self.convert_tokens_to_ids(self.tokenize(seg["value"], for_cpmbee=True)) token_id_subs = [] reid_token_ids = [] for idx in tokens: if idx in self.ext_table: # unk or special token token = self.ext_table[idx] if token.startswith("<") and token.endswith(">"): # special token if "_" in token: token_name = token[1:-1].split("_", maxsplit=1)[0] else: token_name = token[1:-1] token_name = "<{}>".format(token_name) else: token_name = "" if token_name not in self.token_id_table: self.token_id_table[token_name] = {} if idx not in self.token_id_table[token_name]: self.token_id_table[token_name][idx] = len(self.token_id_table[token_name]) if token_name not in self.encoder: raise ValueError("Invalid token {}".format(token)) reid_token_ids.append(self.encoder[token_name]) token_id_subs.append(self.token_id_table[token_name][idx]) else: reid_token_ids.append(idx) token_id_subs.append(0) tokens = [self.bos_token_id] + reid_token_ids token_id_subs = [0] + token_id_subs # eos_id 表示 no need_predict if not seg["need_predict"]: # eos tokens = tokens + [self.eos_token_id] token_id_subs = token_id_subs + [0] else: # no eos pass begin = len(input_ids) input_ids.extend(tokens) input_id_subs.extend(token_id_subs) end = len(input_ids) segment_bound.append((begin, end)) ids = np.array(input_ids, dtype=np.int32) id_subs = np.array(input_id_subs, dtype=np.int32) segs = np.zeros((ids.shape[0],), dtype=np.int32) # 按segment_bound对seg编号 context = np.zeros((ids.shape[0],), dtype=np.int8) for i, (begin, end) in enumerate(segment_bound): if not segments[i]["need_predict"]: context[begin:end] = 1 segs[begin:end] = i curr_ext_table_states: _PrevExtTableStates = { "ext_table": self.ext_table, "token_id_table": self.token_id_table, } return ids, id_subs, context, segs, segment_rel, num_segments, curr_ext_table_states def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) # Build output dictionary encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) # for CPMBee, encode all the model arguments for arg in self.ext_args_for_model: v = kwargs.get(arg, None) if v is not None: encoded_inputs[arg] = v batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def prepare_for_finetune( self, data_list: List[Dict], max_length: int = 2048 ): _inputs: List[NDArray[np.int32]] = [] _inputs_sub: List[NDArray[np.int32]] = [] _context: List[NDArray[np.int8]] = [] _sample_ids: List[NDArray[np.int32]] = [] _segments: List[NDArray[np.int32]] = [] _num_segments: List[NDArray[np.int32]] = [] _segment_rel_offset: List[NDArray[np.int32]] = [] _segment_rel: List[NDArray[np.int32]] = [] _spans: List[List[int]] = [] _raw_data: List[List[Any]] = [] raw_data = {} for data in data_list: ( input_ids, input_id_subs, context, segment_ids, segment_rel, n_segments, _ ) = self.convert_data_to_id(data) input_ids = input_ids[: max_length] context = context[: max_length] segment_ids = segment_ids[: max_length] raw_data["input"] = data raw_data["samples"] = [] sample_ids = np.zeros(input_ids.shape, dtype=np.int32) segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) _inputs.append(input_ids) _inputs_sub.append(input_id_subs) _context.append(context) _sample_ids.append(sample_ids) _segments.append(segment_ids) _num_segments.append(num_segments) _segment_rel_offset.append(segment_rel_offset) _segment_rel.append(segment_rel) _spans.append([input_ids.shape[0]]) _raw_data.append([raw_data]) batch_size = len(_inputs) inputs = np.zeros((batch_size, max_length), dtype=np.int32) inputs_sub = np.zeros((batch_size, max_length), dtype=np.int32) context = np.zeros((batch_size, max_length), dtype=np.int8) sample_ids = np.zeros((batch_size, max_length), dtype=np.int32) segments = np.zeros((batch_size, max_length), dtype=np.int32) num_segments = np.zeros((batch_size, max_length), dtype=np.int32) segment_rel_offset = np.zeros((batch_size, max_length), dtype=np.int32) tgt = np.full((batch_size, max_length), -100, dtype=np.int32) max_rel = 0 for i in range(batch_size): max_rel = max(max_rel, _segment_rel[i].shape[0]) segment_rel = np.zeros((batch_size, max_rel), dtype=np.int32) spans = np.zeros((batch_size, max_length), dtype=np.int32) length = np.zeros((batch_size,), dtype=np.int32) batch_ext_table_map: Dict[Tuple[int, int], int] = {} batch_ext_table_ids: List[int] = [] batch_ext_table_sub: List[int] = [] raw_data_list: List[Any] = [] for i in range(batch_size): instance_length = _inputs[i].shape[0] rel_size = _segment_rel[i].shape[0] inputs[i, :instance_length] = _inputs[i] inputs_sub[i, :instance_length] = _inputs_sub[i] context[i, :instance_length] = _context[i] sample_ids[i, :instance_length] = _sample_ids[i] segments[i, :instance_length] = _segments[i] num_segments[i, :instance_length] = _num_segments[i] segment_rel_offset[i, :instance_length] = _segment_rel_offset[i] segment_rel[i, :rel_size] = _segment_rel[i] span_begin = 0 for span_id, span_end in enumerate(_spans[i]): spans[i, span_begin:span_end] = span_id span_begin = span_end length[i] = instance_length raw_data_list.extend(_raw_data[i]) for j in range(instance_length): idx, idx_sub = _inputs[i][j], _inputs_sub[i][j] tgt_idx = idx if idx_sub > 0: # need to be in ext table if (idx, idx_sub) not in batch_ext_table_map: batch_ext_table_map[(idx, idx_sub)] = len(batch_ext_table_map) batch_ext_table_ids.append(idx) batch_ext_table_sub.append(idx_sub) tgt_idx = batch_ext_table_map[(idx, idx_sub)] + self.vocab_size if j > 1 and context[i, j - 1] == 0: if idx != self.bos_token_id: tgt[i, j - 1] = tgt_idx else: tgt[i, j - 1] = self.eos_token_id if context[i, instance_length - 1] == 0: tgt[i, instance_length - 1] = self.eos_token_id if len(batch_ext_table_map) == 0: # placeholder batch_ext_table_ids.append(0) batch_ext_table_sub.append(1) return BatchEncoding({ "input_ids": inputs, "input_id_sub": inputs_sub, "length": length, "context": context > 0, "sample_ids": sample_ids, "num_segments": num_segments, "segment": segments, "segment_rel_offset": segment_rel_offset, "segment_rel": segment_rel, "span": spans, "labels": tgt, "ext_table_ids": np.array(batch_ext_table_ids, dtype=np.int32), "ext_table_sub": np.array(batch_ext_table_sub, dtype=np.int32) }, tensor_type="pt")