--- library_name: transformers license: llama3.1 base_model: oxford-llms/llama3-1-ox-llms-8b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - argilla/dpo-mix-7k model-index: - name: llama3-1-ox-llms-8b-dpo-full results: [] --- # llama3-1-ox-llms-8b-dpo-full This model is a fine-tuned version of [oxford-llms/llama3-1-ox-llms-8b-sft-full](https://huggingface.co/oxford-llms/llama3-1-ox-llms-8b-sft-full) on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set: - Loss: 0.4831 - Rewards/chosen: -0.2543 - Rewards/rejected: -1.0940 - Rewards/accuracies: 0.7708 - Rewards/margins: 0.8397 - Logps/rejected: -340.3136 - Logps/chosen: -325.1967 - Logits/rejected: -1.3101 - Logits/chosen: -1.3085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.528 | 0.9479 | 100 | 0.5267 | -0.0255 | -0.6055 | 0.7604 | 0.5800 | -330.5430 | -320.6201 | -1.3169 | -1.3159 | | 0.3731 | 1.8957 | 200 | 0.4821 | -0.2481 | -1.0900 | 0.7604 | 0.8419 | -340.2323 | -325.0733 | -1.3099 | -1.3082 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3