--- base_model: oyemade/w2v-bert-2.0-yoruba-CV17.0 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v-bert-2.0-yoruba-CV17.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: yo split: test args: yo metrics: - name: Wer type: wer value: 0.10649647551914651 language: - yo --- # w2v-bert-2.0-yoruba-CV17.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1095 - Wer: 0.1065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.3812 | 0.5102 | 100 | 0.3328 | 0.3070 | | 0.2283 | 1.0204 | 200 | 0.2721 | 0.2807 | | 0.1993 | 1.5306 | 300 | 0.3371 | 0.3481 | | 0.2045 | 2.0408 | 400 | 0.3514 | 0.3314 | | 0.2057 | 2.5510 | 500 | 0.3036 | 0.3086 | | 0.2193 | 3.0612 | 600 | 0.2904 | 0.2847 | | 0.1956 | 3.5714 | 700 | 0.2631 | 0.2534 | | 0.1717 | 4.0816 | 800 | 0.1923 | 0.1995 | | 0.1234 | 4.5918 | 900 | 0.1678 | 0.1732 | | 0.0995 | 5.1020 | 1000 | 0.1280 | 0.1341 | | 0.0614 | 5.6122 | 1100 | 0.1095 | 0.1065 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1