--- language: - tr license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: "Whisper Large TR - \xD6zg\xFCn Tosun" results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: tr split: None args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 11.727918051936383 --- # Whisper Large TR - Özgün Tosun This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1323 - Wer: 11.7279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1372 | 0.3652 | 1000 | 0.1810 | 16.0805 | | 0.1103 | 0.7305 | 2000 | 0.1628 | 14.5458 | | 0.0563 | 1.0957 | 3000 | 0.1513 | 12.9302 | | 0.0657 | 1.4609 | 4000 | 0.1383 | 12.4198 | | 0.0444 | 1.8262 | 5000 | 0.1323 | 11.7279 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1