--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-finetuned-valid-testing-0.0002-32 results: [] --- # BioMedRoBERTa-finetuned-valid-testing-0.0002-32 This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0879 - Precision: 0.8178 - Recall: 0.8292 - F1: 0.8235 - Accuracy: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 209 | 0.1001 | 0.7504 | 0.7779 | 0.7639 | 0.9695 | | No log | 2.0 | 418 | 0.0776 | 0.8208 | 0.8153 | 0.8180 | 0.9771 | | 0.2051 | 3.0 | 627 | 0.0812 | 0.8026 | 0.8140 | 0.8083 | 0.9725 | | 0.2051 | 4.0 | 836 | 0.0850 | 0.7953 | 0.8254 | 0.8101 | 0.9758 | | 0.0355 | 5.0 | 1045 | 0.0879 | 0.8178 | 0.8292 | 0.8235 | 0.9763 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1