--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-full-finetuned-ner-pablo results: [] --- # BioMedRoBERTa-full-finetuned-ner-pablo This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0985 - Precision: 0.8190 - Recall: 0.8095 - F1: 0.8142 - Accuracy: 0.9779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0864 | 1.0 | 2509 | 0.0915 | 0.8408 | 0.7476 | 0.7915 | 0.9753 | | 0.0616 | 2.0 | 5018 | 0.0766 | 0.8116 | 0.7911 | 0.8012 | 0.9782 | | 0.0439 | 3.0 | 7527 | 0.0838 | 0.8132 | 0.8024 | 0.8078 | 0.9776 | | 0.0338 | 4.0 | 10036 | 0.0891 | 0.8207 | 0.8030 | 0.8118 | 0.9775 | | 0.0268 | 5.0 | 12545 | 0.0985 | 0.8190 | 0.8095 | 0.8142 | 0.9779 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1