--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-full-finetuned-ner-pablo results: [] --- # BioMedRoBERTa-full-finetuned-ner-pablo This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0951 - Precision: 0.8139 - Recall: 0.8085 - F1: 0.8112 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9970 | 252 | 0.0910 | 0.7348 | 0.7922 | 0.7624 | 0.9723 | | 0.19 | 1.9980 | 505 | 0.0808 | 0.8030 | 0.7908 | 0.7969 | 0.9768 | | 0.19 | 2.9990 | 758 | 0.0802 | 0.8125 | 0.7932 | 0.8028 | 0.9768 | | 0.0433 | 4.0 | 1011 | 0.0865 | 0.8131 | 0.8103 | 0.8117 | 0.9772 | | 0.0433 | 4.9852 | 1260 | 0.0951 | 0.8139 | 0.8085 | 0.8112 | 0.9769 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1