--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-full-finetuned-ner-pablo results: [] --- # BioMedRoBERTa-full-finetuned-ner-pablo This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0596 - Precision: 0.8360 - Recall: 0.8339 - F1: 0.8350 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 231 | 0.0783 | 0.7809 | 0.8068 | 0.7936 | 0.9766 | | No log | 2.0 | 462 | 0.0596 | 0.8360 | 0.8339 | 0.8350 | 0.9815 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1