--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall datasets: - param-bharat/scorers-nli pipeline_tag: text-classification model-index: - name: ModernBERT-base-nli-clf results: [] --- # ModernBERT-base-nli-clf This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0101 - F1: 0.8717 - Accuracy: 0.8717 - Precision: 0.8717 - Recall: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 128 - seed: 2024 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 1024 - total_eval_batch_size: 1024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:------:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:| | No log | 0 | 0 | 0.0185 | 0.5044 | 0.5297 | 0.5418 | 0.5297 | | 0.0135 | 0.4999 | 6630 | 0.0150 | 0.7539 | 0.755 | 0.7582 | 0.755 | | 0.0108 | 0.9998 | 13260 | 0.0108 | 0.8539 | 0.8539 | 0.8540 | 0.8539 | | 0.0109 | 1.4998 | 19890 | 0.0113 | 0.8492 | 0.8493 | 0.8496 | 0.8493 | | 0.0103 | 1.9997 | 26520 | 0.0103 | 0.8641 | 0.8641 | 0.8641 | 0.8641 | | 0.0099 | 2.4996 | 33150 | 0.0109 | 0.8575 | 0.8579 | 0.8630 | 0.8579 | | 0.0095 | 2.9995 | 39780 | 0.0103 | 0.8686 | 0.8686 | 0.8686 | 0.8686 | | 0.0092 | 3.4995 | 46410 | 0.0101 | 0.8700 | 0.87 | 0.8700 | 0.87 | | 0.0094 | 3.9994 | 53040 | 0.0097 | 0.8751 | 0.8751 | 0.8751 | 0.8751 | | 0.0095 | 4.4993 | 59670 | 0.0105 | 0.8664 | 0.8664 | 0.8664 | 0.8664 | | 0.0086 | 4.9992 | 66300 | 0.0101 | 0.8717 | 0.8717 | 0.8717 | 0.8717 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0