--- language: - nn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-npsc results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: 16K_mp3_bokmaal split: train args: 16K_mp3_bokmaal metrics: - name: Wer type: wer value: 12.925418803583286 --- # whisper-small-npsc This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2028 - Wer: 12.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3922 | 0.18 | 500 | 0.3975 | 24.2055 | | 0.2893 | 0.36 | 1000 | 0.3139 | 20.1507 | | 0.2471 | 0.54 | 1500 | 0.2733 | 17.4449 | | 0.2159 | 0.72 | 2000 | 0.2488 | 16.2681 | | 0.2195 | 0.89 | 2500 | 0.2304 | 15.0577 | | 0.1178 | 1.07 | 3000 | 0.2245 | 14.5968 | | 0.1099 | 1.25 | 3500 | 0.2183 | 14.1118 | | 0.1059 | 1.43 | 4000 | 0.2136 | 13.7914 | | 0.1156 | 1.61 | 4500 | 0.2072 | 13.7491 | | 0.1025 | 1.79 | 5000 | 0.2034 | 13.1515 | | 0.1123 | 1.97 | 5500 | 0.2006 | 13.0284 | | 0.0734 | 2.15 | 6000 | 0.2028 | 12.9254 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1