--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy base_model: bert-base-cased model-index: - name: bert-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - type: precision value: 0.9371173258315406 name: Precision - type: recall value: 0.9530461124200605 name: Recall - type: f1 value: 0.945014601585315 name: F1 - type: accuracy value: 0.9865338199799847 name: Accuracy --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0599 - Precision: 0.9371 - Recall: 0.9530 - F1: 0.9450 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0883 | 1.0 | 1756 | 0.0690 | 0.9181 | 0.9320 | 0.9250 | 0.9821 | | 0.0334 | 2.0 | 3512 | 0.0623 | 0.9279 | 0.9504 | 0.9390 | 0.9858 | | 0.0189 | 3.0 | 5268 | 0.0599 | 0.9371 | 0.9530 | 0.9450 | 0.9865 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1