---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:844
- loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Help fix a problem with my device’s battery life
sentences:
- order query
- faq query
- technical support query
- source_sentence: 订购一双运动鞋
sentences:
- service request
- feedback query
- product query
- source_sentence: 告诉我如何更改我的密码
sentences:
- support query
- product query
- faq query
- source_sentence: Get information on the next local festival
sentences:
- event inquiry
- service request
- account query
- source_sentence: Change the currency for my payment
sentences:
- product query
- payment query
- faq query
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: MiniLM dev
type: MiniLM-dev
metrics:
- type: pearson_cosine
value: 0.7356955662825808
name: Pearson Cosine
- type: spearman_cosine
value: 0.7320761390174187
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6240041985776243
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6179783414452009
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6321466982201008
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6296964936282937
name: Spearman Euclidean
- type: pearson_dot
value: 0.7491168439451736
name: Pearson Dot
- type: spearman_dot
value: 0.7592129124940543
name: Spearman Dot
- type: pearson_max
value: 0.7491168439451736
name: Pearson Max
- type: spearman_max
value: 0.7592129124940543
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: MiniLM test
type: MiniLM-test
metrics:
- type: pearson_cosine
value: 0.7687106130417081
name: Pearson Cosine
- type: spearman_cosine
value: 0.7552108666502075
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7462708006775693
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7365483246407295
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7545194410402545
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7465016803791179
name: Spearman Euclidean
- type: pearson_dot
value: 0.7251488155932073
name: Pearson Dot
- type: spearman_dot
value: 0.7390366635753267
name: Spearman Dot
- type: pearson_max
value: 0.7687106130417081
name: Pearson Max
- type: spearman_max
value: 0.7552108666502075
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small")
# Run inference
sentences = [
'Change the currency for my payment',
'payment query',
'faq query',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `MiniLM-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7357 |
| **spearman_cosine** | **0.7321** |
| pearson_manhattan | 0.624 |
| spearman_manhattan | 0.618 |
| pearson_euclidean | 0.6321 |
| spearman_euclidean | 0.6297 |
| pearson_dot | 0.7491 |
| spearman_dot | 0.7592 |
| pearson_max | 0.7491 |
| spearman_max | 0.7592 |
#### Semantic Similarity
* Dataset: `MiniLM-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7687 |
| **spearman_cosine** | **0.7552** |
| pearson_manhattan | 0.7463 |
| spearman_manhattan | 0.7365 |
| pearson_euclidean | 0.7545 |
| spearman_euclidean | 0.7465 |
| pearson_dot | 0.7251 |
| spearman_dot | 0.739 |
| pearson_max | 0.7687 |
| spearman_max | 0.7552 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 844 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Update the payment method for my order
| order query
| 1.0
|
| Не могу установить новое обновление, помогите!
| support query
| 1.0
|
| Помогите мне изменить настройки конфиденциальности
| support query
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 106 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | 帮我修复系统错误
| support query
| 1.0
|
| Je veux commander une pizza
| product query
| 1.0
|
| Fix problems with my device’s Bluetooth connection
| technical support query
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters