--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:844 - loss:CoSENTLoss base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 datasets: [] metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: Help fix a problem with my device’s battery life sentences: - order query - faq query - technical support query - source_sentence: 订购一双运动鞋 sentences: - service request - feedback query - product query - source_sentence: 告诉我如何更改我的密码 sentences: - support query - product query - faq query - source_sentence: Get information on the next local festival sentences: - event inquiry - service request - account query - source_sentence: Change the currency for my payment sentences: - product query - payment query - faq query pipeline_tag: sentence-similarity model-index: - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: MiniLM dev type: MiniLM-dev metrics: - type: pearson_cosine value: 0.7356955662825808 name: Pearson Cosine - type: spearman_cosine value: 0.7320761390174187 name: Spearman Cosine - type: pearson_manhattan value: 0.6240041985776243 name: Pearson Manhattan - type: spearman_manhattan value: 0.6179783414452009 name: Spearman Manhattan - type: pearson_euclidean value: 0.6321466982201008 name: Pearson Euclidean - type: spearman_euclidean value: 0.6296964936282937 name: Spearman Euclidean - type: pearson_dot value: 0.7491168439451736 name: Pearson Dot - type: spearman_dot value: 0.7592129124940543 name: Spearman Dot - type: pearson_max value: 0.7491168439451736 name: Pearson Max - type: spearman_max value: 0.7592129124940543 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: MiniLM test type: MiniLM-test metrics: - type: pearson_cosine value: 0.7687106130417081 name: Pearson Cosine - type: spearman_cosine value: 0.7552108666502075 name: Spearman Cosine - type: pearson_manhattan value: 0.7462708006775693 name: Pearson Manhattan - type: spearman_manhattan value: 0.7365483246407295 name: Spearman Manhattan - type: pearson_euclidean value: 0.7545194410402545 name: Pearson Euclidean - type: spearman_euclidean value: 0.7465016803791179 name: Spearman Euclidean - type: pearson_dot value: 0.7251488155932073 name: Pearson Dot - type: spearman_dot value: 0.7390366635753267 name: Spearman Dot - type: pearson_max value: 0.7687106130417081 name: Pearson Max - type: spearman_max value: 0.7552108666502075 name: Spearman Max --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small") # Run inference sentences = [ 'Change the currency for my payment', 'payment query', 'faq query', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `MiniLM-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7357 | | **spearman_cosine** | **0.7321** | | pearson_manhattan | 0.624 | | spearman_manhattan | 0.618 | | pearson_euclidean | 0.6321 | | spearman_euclidean | 0.6297 | | pearson_dot | 0.7491 | | spearman_dot | 0.7592 | | pearson_max | 0.7491 | | spearman_max | 0.7592 | #### Semantic Similarity * Dataset: `MiniLM-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7687 | | **spearman_cosine** | **0.7552** | | pearson_manhattan | 0.7463 | | spearman_manhattan | 0.7365 | | pearson_euclidean | 0.7545 | | spearman_euclidean | 0.7465 | | pearson_dot | 0.7251 | | spearman_dot | 0.739 | | pearson_max | 0.7687 | | spearman_max | 0.7552 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 844 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------|:---------------------------|:-----------------| | Update the payment method for my order | order query | 1.0 | | Не могу установить новое обновление, помогите! | support query | 1.0 | | Помогите мне изменить настройки конфиденциальности | support query | 1.0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 106 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------|:-------------------------------------|:-----------------| | 帮我修复系统错误 | support query | 1.0 | | Je veux commander une pizza | product query | 1.0 | | Fix problems with my device’s Bluetooth connection | technical support query | 1.0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | MiniLM-dev_spearman_cosine | MiniLM-test_spearman_cosine | |:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:| | 0.0943 | 10 | 4.0771 | 2.2054 | 0.2529 | - | | 0.1887 | 20 | 4.4668 | 1.8221 | 0.3528 | - | | 0.2830 | 30 | 2.5459 | 1.5545 | 0.4638 | - | | 0.3774 | 40 | 2.1926 | 1.3145 | 0.5569 | - | | 0.4717 | 50 | 0.9001 | 1.1653 | 0.6285 | - | | 0.5660 | 60 | 1.4049 | 1.0734 | 0.6834 | - | | 0.6604 | 70 | 0.7204 | 0.9951 | 0.6988 | - | | 0.7547 | 80 | 1.4023 | 1.1213 | 0.6945 | - | | 0.8491 | 90 | 0.2315 | 1.2931 | 0.6414 | - | | 0.9434 | 100 | 0.0018 | 1.3904 | 0.6180 | - | | 1.0377 | 110 | 0.0494 | 1.2889 | 0.6322 | - | | 1.1321 | 120 | 0.3156 | 1.2461 | 0.6402 | - | | 1.2264 | 130 | 1.8153 | 1.0844 | 0.6716 | - | | 1.3208 | 140 | 0.2638 | 0.9939 | 0.6957 | - | | 1.4151 | 150 | 0.5454 | 0.9545 | 0.7056 | - | | 1.5094 | 160 | 0.3421 | 0.9699 | 0.7062 | - | | 1.6038 | 170 | 0.0035 | 0.9521 | 0.7093 | - | | 1.6981 | 180 | 0.0401 | 0.8988 | 0.7160 | - | | 1.7925 | 190 | 0.8138 | 0.8619 | 0.7271 | - | | 1.8868 | 200 | 0.0236 | 0.8449 | 0.7315 | - | | 1.9811 | 210 | 0.0012 | 0.8438 | 0.7321 | - | | 2.0 | 212 | - | - | - | 0.7552 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.3.1+cu121 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```