from typing import Dict, List, Any from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer import torch.nn.functional as F import torch # copied from the model card def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) class PreTrainedPipeline(): def __init__(self, path=""): # load the optimized model self.model = ORTModelForFeatureExtraction.from_pretrained(path, file_name="model-quantized.onnx") self.tokenizer = AutoTokenizer.from_pretrained(path) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The list contains the embeddings of the inference inputs """ inputs = data.get("inputs", data) # tokenize the input encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt') # run the model outputs = self.model(**encoded_inputs) # Perform pooling sentence_embeddings = mean_pooling(outputs, encoded_inputs['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) # postprocess the prediction return {"embeddings": sentence_embeddings.tolist()}