--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-banking77-pt2 results: [] datasets: - PolyAI/banking77 language: - en base_model: - google-bert/bert-base-uncased --- # bert-base-banking77-pt2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3111 - F1: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0958 | 1.0 | 626 | 0.7854 | 0.8363 | | 0.3958 | 2.0 | 1252 | 0.3744 | 0.9168 | | 0.1894 | 3.0 | 1878 | 0.3111 | 0.9275 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.4.1+cu121 - Datasets 2.9.0 - Tokenizers 0.13.3 ## How to use ```py from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline ckpt = 'pistachio7/bert-base-banking77-pt2' tokenizer = AutoTokenizer.from_pretrained(ckpt) model = AutoModelForSequenceClassification.from_pretrained(ckpt) classifier = pipeline('text-classification', tokenizer=tokenizer, model=model) classifier('What is the base of the exchange rates?') # Output: [{'label': 'exchange_rate', 'score': 0.9961327314376831}] ```