--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: cifar100-vit-base-patch16-224-in21k results: [] --- # cifar100-vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar100 dataset. It achieves the following results on the evaluation set: - Loss: 0.2945 - Accuracy: 0.926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3866 | 1.0 | 5313 | 1.0968 | 0.8747 | | 0.6479 | 2.0 | 10626 | 0.4377 | 0.9004 | | 0.6092 | 3.0 | 15939 | 0.3439 | 0.9081 | | 0.4173 | 4.0 | 21252 | 0.3205 | 0.9169 | | 0.4665 | 5.0 | 26565 | 0.3039 | 0.9175 | | 0.3944 | 6.0 | 31878 | 0.3082 | 0.9201 | | 0.303 | 7.0 | 37191 | 0.3011 | 0.9241 | | 0.6128 | 8.0 | 42504 | 0.2983 | 0.9261 | | 0.3794 | 9.0 | 47817 | 0.2945 | 0.926 | | 0.3274 | 10.0 | 53130 | 0.3032 | 0.9269 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.15.2