--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: food101-vit-base-patch16-224-in21k results: [] --- # food101-vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.3873 - Accuracy: 0.9035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9431 | 1.0 | 9469 | 0.6777 | 0.8593 | | 0.617 | 2.0 | 18938 | 0.4546 | 0.8802 | | 0.9109 | 3.0 | 28407 | 0.4086 | 0.8899 | | 1.0346 | 4.0 | 37876 | 0.3911 | 0.8968 | | 0.2142 | 5.0 | 47345 | 0.4098 | 0.8913 | | 0.7247 | 6.0 | 56814 | 0.3904 | 0.9008 | | 0.3935 | 7.0 | 66283 | 0.3873 | 0.9035 | | 0.552 | 8.0 | 75752 | 0.3915 | 0.9053 | | 0.4012 | 9.0 | 85221 | 0.3955 | 0.9052 | | 0.2699 | 10.0 | 94690 | 0.3894 | 0.9072 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.15.2