--- license: other base_model: "FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - lycoris inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'bssprshps car interior objects, black background, vertically positioned, antenna' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png - text: 'bssprshps car interior objects, car dashboard cover, gray, car interior background, on top of the dashboard, side view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_2_0.png - text: 'bssprshps car interior objects, windshield phone mount, on top of a silky cloth, side view, silky cloth background' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_3_0.png - text: 'bssprshps car interior objects, windshield phone mount, car interior background, sticking on the windshield, isometric view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_4_0.png - text: 'snwypnswhtlbs dog, front view, sitting position, tongue is out, collar on its neck and leash is lifted up, grass field on the back, sitting on a cement ground' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_5_0.png - text: 'snwypnswhtlbs dog, front view, out-of-focus background, laying on a white blanket, red ribbon on its neck' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_6_0.png - text: 'snwypnswhtlbs dog, laying on the water, tongue is out, out-of-focus background, pond background, facing on the right side' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_7_0.png - text: 'snwypnswhtlbs dog, running in the water, out-of-focus background, lake background, running to the left, side view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_8_0.png - text: 'bssprshps cooler, brown and black, white background, front view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_9_0.png - text: 'bssprshps cooler, opened, red, front view, garden background, on the ground, filled with drinks and fruits and bread' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_10_0.png - text: 'bssprshps cooler, front view, boat on water background, on top of a boat, light skinned person closing the box' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_11_0.png - text: 'bssprshps cooler, turquoise, opened, isometric view, white background' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_12_0.png - text: 'dptyq perfume, white background, next to a red coral and oval glass, corail oscuro scent, product is laying' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_13_0.png - text: 'dptyq perfume, white background, product is laying, bottle cap is next to the product, top view, doson scent, perfume bottle is open, oval bottle and cylinder-shaped cap' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_14_0.png - text: 'dptyq perfume, oval bottle and cylinder-shaped cap, product is laying, leau papier scent, on the floor, next to a writing materials' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_15_0.png - text: 'dptyq perfume, oval bottle and cylinder-shaped cap, leau papier scent, product is laying, top view, next to the product branding' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_16_0.png - text: 'bssprshps hat, orange, white background, isometric view, corduroy' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_17_0.png - text: 'bssprshps hat, brown, on top of the couch, front view, navy blue couch, text only logo' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_18_0.png - text: 'bssprshps hat, sky blue, black background, isometric view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_19_0.png - text: 'bssprshps hat, camo brown and green, black background, isometric view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_20_0.png - text: 'dptyq perfume set, white background, cylinder-shaped bottles, front view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_21_0.png - text: 'dptyq perfume set, white background, cylinder-shaped bottles, front view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_22_0.png - text: 'dptyq perfume set, front view, on the packaging box, next to the packaging cover, black background' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_23_0.png - text: 'dptyq perfume set, white background, front view, on the packaging box, next to the packaging cover' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_24_0.png - text: 'dptyq car diffuser, white background, amber scent, back view, next to the product packaging' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_25_0.png - text: 'dptyq car diffuser, white background, roses scent, back view, next to the product packaging' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_26_0.png - text: 'dptyq car diffuser, white background, back view' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_27_0.png - text: 'dptyq car diffuser, white background, back view, ginger scent, next to the product packaging' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_28_0.png - text: 'bssprshps head net, worn by a tan-skinned woman, worn by a dark-skinned man, out-of-focus background, front view, taking a selfie, wearing a camo hat and a teal and gray striped shirt, wearing a woven hat and a flannel shirt' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_29_0.png - text: 'bssprshps head net, worn by a mannequin head, side view, white background, wearing a white hat' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_30_0.png - text: 'bssprshps head net, worn by a light-skinned man, side view, white background, wearing a black baseball cap and a white shirt' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_31_0.png - text: 'bssprshps head net, out-of-focus background, worn by a light-skinned woman, side view, green, wearing a knitted hat, glasses, and a dark shirt' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_32_0.png - text: 'a photo of a daisy' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_33_0.png --- # y This is a LyCORIS adapter derived from [FLUX.1-dev](https://huggingface.co/FLUX.1-dev). The main validation prompt used during training was: ``` a photo of a daisy ``` ## Validation settings - CFG: `3.5` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `69` - Resolution: `1024x1024` - Skip-layer guidance: Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 30 - Training steps: 3000 - Learning rate: 0.0001 - Learning rate schedule: constant - Warmup steps: 0 - Max grad norm: 2.0 - Effective batch size: 8 - Micro-batch size: 2 - Gradient accumulation steps: 1 - Number of GPUs: 4 - Gradient checkpointing: True - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible']) - Optimizer: optimi-stableadamwweight_decay=1e-3 - Trainable parameter precision: Pure BF16 - Caption dropout probability: 5.0% ### LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1, "linear_dim": 1000000, "linear_alpha": 1, "factor": 12, "init_lokr_norm": 0.001, "apply_preset": { "target_module": [ "FluxTransformerBlock", "FluxSingleTransformerBlock" ], "module_algo_map": { "Attention": { "factor": 12 }, "FeedForward": { "factor": 6 } } } } ``` ## Datasets ### dptyqxbssprshps_flat-512 - Repeats: 0 - Total number of images: ~216 - Total number of aspect buckets: 2 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### dptyqxbssprshps_flat-768 - Repeats: 0 - Total number of images: ~180 - Total number of aspect buckets: 10 - Resolution: 0.589824 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### dptyqxbssprshps_flat-1024 - Repeats: 1 - Total number of images: ~152 - Total number of aspect buckets: 11 - Resolution: 1.048576 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights def download_adapter(repo_id: str): import os from huggingface_hub import hf_hub_download adapter_filename = "pytorch_lora_weights.safetensors" cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) os.makedirs(path_to_adapter, exist_ok=True) hf_hub_download( repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter ) return path_to_adapter_file model_id = 'FLUX.1-dev' adapter_repo_id = 'playerzer0x/y' adapter_filename = 'pytorch_lora_weights.safetensors' adapter_file_path = download_adapter(repo_id=adapter_repo_id) pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) wrapper.merge_to() prompt = "a photo of a daisy" ## Optional: quantise the model to save on vram. ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. #from optimum.quanto import quantize, freeze, qint8 #quantize(pipeline.transformer, weights=qint8) #freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69), width=1024, height=1024, guidance_scale=3.5, ).images[0] image.save("output.png", format="PNG") ```