--- license: mit inference: parameters: aggregation_strategy: "average" language: - pt pipeline_tag: token-classification tags: - medialbertina-ptpt - deberta - portuguese - european portuguese - medical - clinical - healthcare - NER - Named Entity Recognition - IE - Information Extraction widget: - text: Durante a cirurgia ortopédica para corrigir a fratura no tornozelo, os sinais vitais do utente, incluindo a pressão arterial, com leitura de 120/87 mmHg, a frequência cardíaca, de 80 batimentos por minuto, e SpO2 a 98%, foram monitorizados. Após a cirurgia o utente apresentava dor intensa no local e inchaço no tornozelo, mas os resultados dos exames de radiografia revelaram uma recuperação satisfatória. example_title: Example 1 - text: Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente. example_title: Example 2 - text: Foi recomendada aspirina de 500mg a cada 4 horas, durante 3 dias. example_title: Example 3 - text: Após as sessões de fisioterapia o paciente apresenta recuperação de mobilidade. example_title: Example 4 - text: O paciente está em Quimioterapia com uma dosagem específica de Cisplatina para o tratamento do cancro do pulmão. example_title: Example 5 - text: Monitorização da Freq. cardíaca com 90 bpm. P Arterial de 120-80 mmHg example_title: Example 6 - text: A ressonância magnética da utente revelou uma rotura no menisco lateral do joelho. example_title: Example 7 - text: A paciente foi diagnosticada com esclerose múltipla e iniciou terapia com imunomoduladores. example_title: Example 8 --- # MediAlbertina The first publicly available medical language model trained with real European Portuguese data. MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of [PORTULAN's Albertina](https://huggingface.co/PORTULAN) models with Electronic Medical Records shared by Portugal's largest public hospital. Like its antecessors, MediAlbertina models are distributed under the [MIT license](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m_NER_all/blob/main/LICENSE). # Model Description **MediAlbertina PT-PT 900M NER all** was created through fine-tuning of [MediAlbertina PT-PT 900M](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m) on real European Portuguese EMRs that have been hand-annotated for the following entities: - **Diagnostico (D)**: All types of diseases and conditions following the ICD-10-CM guidelines. - **Sintoma (S)**: Any complaints or evidence from healthcare professionals indicating that a patient is experiencing a medical condition. - **Medicamento (M)**: Something that is administrated to the patient (through any route), including drugs, specific food/drink, vitamins, or blood for transfusion. - **Dosagem (D)**: Dosage and frequency of medication administration. - **ProcedimentoMedico (PM)**: Anything healthcare professionals do related to patients, including exams, moving patients, administering something, or even surgeries. - **SinalVital (SV)**: Quantifiable indicators in a patient that can be measured, always associated with a specific result. Examples include cholesterol levels, diuresis, weight, or glycaemia. - **Resultado (R)**: Results can be associated with Medical Procedures and Vital Signs. It can be a numerical value if something was measured (e.g., the value associated with blood pressure) or a descriptor to indicate the result (e.g., positive/negative, functional). - **Progresso (P)**: Describes the progress of patient’s condition. Typically, it includes verbs like improving, evolving, or regressing and mentions to patient’s stability. **MediAlbertina PT-PT 900M NER all** achieved superior results to the same adaptation made on a non-medical Portuguese language model, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal. | Model | B-D | I-D | B-S | I-S | B-PM | I-PM | B-SV | I-SV | B-R | I-R | B-M | I-M | B-DO | I-DO | B-P | I-P | |-------------------------|:----:|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | | albertina-900m-portuguese-ptpt-encoder|0.721|0.786|0.734|0.775|0.737|0.805|0.859|0.811|0.803|0.816|0.913|0.871|**0.853**|**0.895**|0.769|0.785| | **medialbertina_pt-pt_900m** | **0.799**| **0.832**| **0.754**| **0.782**| **0.786**| **0.813**| **0.916**| **0.788**| **0.821**| **0.83**| **0.926**| **0.895**|0.85|0.885| **0.779**| **0.807**| ## Data **MediAlbertina PT-PT 900M NER all** was fine-tuned on about 10k hand-annotated medical entities from about 4k fully anonymized medical sentences from Portugal's largest public hospital. This data was acquired under the framework of the [FCT project DSAIPA/AI/0122/2020 AIMHealth-Mobile Applications Based on Artificial Intelligence](https://ciencia.iscte-iul.pt/projects/aplicacoes-moveis-baseadas-em-inteligencia-artificial-para-resposta-de-saude-publica/1567). ## How to use ```Python from transformers import pipeline ner_pipeline = pipeline('ner', model='portugueseNLP/medialbertina_pt-pt_900m_NER_all', aggregation_strategy='average') sentence = 'Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.' entities = ner_pipeline(sentence) for entity in entities: print(f"{entity['entity_group']} - {sentence[entity['start']:entity['end']]}") ``` ## Citation MediAlbertina is developed by a joint team from [ISCTE-IUL](https://www.iscte-iul.pt/), Portugal, and [Select Data](https://selectdata.com/), CA USA. For a fully detailed description, check the respective publication: ```latex In publishing process. Reference will be added soon. ``` Please use the above cannonical reference when using or citing this model.