--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: moon-detector-v5.b results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9798488664987406 --- # moon-detector-v5.b This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0866 - Accuracy: 0.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1338 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0246 | 1.0 | 281 | 0.1017 | 0.9773 | | 0.0223 | 2.0 | 562 | 0.1100 | 0.9723 | | 0.061 | 3.0 | 843 | 0.0889 | 0.9798 | | 0.0143 | 4.0 | 1124 | 0.0878 | 0.9824 | | 0.01 | 5.0 | 1405 | 0.0866 | 0.9798 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cpu - Datasets 2.12.0 - Tokenizers 0.13.3