--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: mpnet-adaptation_mitigation-classifier results: [] --- # mpnet-adaptation_mitigation-classifier This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2117 - Precision Micro: 0.9175 - Precision Weighted: 0.9181 - Precision Samples: 0.9256 - Recall Micro: 0.9281 - Recall Weighted: 0.9281 - Recall Samples: 0.9314 - F1-score: 0.9263 - Accuracy: 0.9082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:|:--------:| | 0.3291 | 1.0 | 1051 | 0.2117 | 0.9175 | 0.9181 | 0.9256 | 0.9281 | 0.9281 | 0.9314 | 0.9263 | 0.9082 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3