--- language: - en license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - google/boolq metrics: - accuracy model-index: - name: Bert Base Uncased Boolean Question Answer model results: - task: name: Text Classification type: text-classification dataset: name: boolq type: google/boolq metrics: - name: Accuracy type: accuracy value: 0.7149847094801223 --- # Bert Base Uncased Boolean Question Answer model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the boolq dataset. It achieves the following results on the evaluation set: - Loss: 0.1993 - Accuracy: 0.7150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2317 | 0.9966 | 147 | 0.2198 | 0.6569 | | 0.2 | 2.0 | 295 | 0.2002 | 0.6960 | | 0.1741 | 2.9966 | 442 | 0.1968 | 0.7122 | | 0.1469 | 3.9864 | 588 | 0.1993 | 0.7150 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1