--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Emotion_Classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- # Emotion_Classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1050 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 160 | 1.5776 | 0.4062 | | No log | 2.0 | 320 | 1.3785 | 0.45 | | No log | 3.0 | 480 | 1.2496 | 0.5437 | | 1.5301 | 4.0 | 640 | 1.2040 | 0.5312 | | 1.5301 | 5.0 | 800 | 1.1536 | 0.575 | | 1.5301 | 6.0 | 960 | 1.1603 | 0.575 | | 0.9484 | 7.0 | 1120 | 1.1435 | 0.575 | | 0.9484 | 8.0 | 1280 | 1.1538 | 0.6125 | | 0.9484 | 9.0 | 1440 | 1.1871 | 0.575 | | 0.5674 | 10.0 | 1600 | 1.1620 | 0.6125 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1