--- license: apache-2.0 --- license: apache-2.0 --- **Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) **Code**: https://github.com/princeton-nlp/AutoCompressors **Models**: - Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k) - OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k) - OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k) --- RMT-2.7b-8k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the RMT method as described in [Recurrent Memory Transformer](https://arxiv.org/abs/2207.06881) and [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788). This model is fine-tuned on 2B tokens from [The Pile](https://pile.eleuther.ai). The pre-trained OPT-2.7b model is fine-tuned on sequences of 8,192 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients. To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows: ``` from auto_compressor import AutoCompressorModel model = AutoCompressorModel.from_pretrained("princeton-nlp/RMT-2.7b-8k") ``` **Evaluation** We record the perplexity achieved by our OPT-2.7b models on segments of 2048 tokens, conditioned on different amounts of context. FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2048 tokens into 50 summary vectors. *In-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- | | RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 | | AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 | *Out-of-domain Evaluation* | Context Tokens | 0 |512 | 2048 | 4096 | 6144 | | -----------------------------|-----|-----|------|------|------| | FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- | | RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 | | AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 | See [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788) for more evaluations, including evaluation on 11 in-context learning tasks. ## Bibtex ``` @misc{chevalier2023adapting, title={Adapting Language Models to Compress Contexts}, author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen}, year={2023}, eprint={2305.14788}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```