--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - procit008/STT_Datasetfacebookfemale metrics: - wer model-index: - name: Whisper Small Rajan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: STT_Datasetfacebookfemale type: procit008/STT_Datasetfacebookfemale args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 16.285201982913193 --- # Whisper Small Rajan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the STT_Datasetfacebookfemale dataset. It achieves the following results on the evaluation set: - Loss: 0.5347 - Wer: 16.2852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.156 | 2.1882 | 1000 | 0.4294 | 18.9431 | | 0.0515 | 4.3764 | 2000 | 0.4644 | 16.8864 | | 0.0099 | 6.5646 | 3000 | 0.5102 | 16.4540 | | 0.0046 | 8.7527 | 4000 | 0.5347 | 16.2852 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0