--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN results: [] --- [Visualize in Weights & Biases](https://wandb.ai/pszemraj/eduscore-regression/runs/k6z0kenz) # distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. It achieves the following results on the evaluation set: - Loss: 0.2324 - Mse: 0.2324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 90085 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.5361 | 0.0288 | 100 | 0.4934 | 0.4934 | | 0.3483 | 0.0576 | 200 | 0.3525 | 0.3525 | | 0.3238 | 0.0865 | 300 | 0.2931 | 0.2931 | | 0.2734 | 0.1153 | 400 | 0.3130 | 0.3130 | | 0.2891 | 0.1441 | 500 | 0.3298 | 0.3298 | | 0.2807 | 0.1729 | 600 | 0.2659 | 0.2659 | | 0.2727 | 0.2018 | 700 | 0.2690 | 0.2690 | | 0.2701 | 0.2306 | 800 | 0.2555 | 0.2555 | | 0.2954 | 0.2594 | 900 | 0.2501 | 0.2501 | | 0.2618 | 0.2882 | 1000 | 0.2483 | 0.2483 | | 0.3081 | 0.3171 | 1100 | 0.2456 | 0.2456 | | 0.2544 | 0.3459 | 1200 | 0.2370 | 0.2370 | | 0.2593 | 0.3747 | 1300 | 0.2349 | 0.2349 | | 0.2361 | 0.4035 | 1400 | 0.2406 | 0.2406 | | 0.2536 | 0.4324 | 1500 | 0.2453 | 0.2453 | | 0.26 | 0.4612 | 1600 | 0.2568 | 0.2568 | | 0.2897 | 0.4900 | 1700 | 0.2568 | 0.2568 | | 0.2597 | 0.5188 | 1800 | 0.2359 | 0.2359 | | 0.2489 | 0.5477 | 1900 | 0.2413 | 0.2413 | | 0.2376 | 0.5765 | 2000 | 0.2416 | 0.2416 | | 0.2424 | 0.6053 | 2100 | 0.2418 | 0.2418 | | 0.2798 | 0.6341 | 2200 | 0.2462 | 0.2462 | | 0.2523 | 0.6630 | 2300 | 0.2322 | 0.2322 | | 0.286 | 0.6918 | 2400 | 0.2432 | 0.2432 | | 0.247 | 0.7206 | 2500 | 0.2383 | 0.2383 | | 0.2856 | 0.7494 | 2600 | 0.2375 | 0.2375 | | 0.2216 | 0.7783 | 2700 | 0.2383 | 0.2383 | | 0.255 | 0.8071 | 2800 | 0.2367 | 0.2367 | | 0.2406 | 0.8359 | 2900 | 0.2345 | 0.2345 | | 0.2388 | 0.8647 | 3000 | 0.2282 | 0.2282 | | 0.2571 | 0.8936 | 3100 | 0.2331 | 0.2331 | | 0.2672 | 0.9224 | 3200 | 0.2336 | 0.2336 | | 0.2375 | 0.9512 | 3300 | 0.2337 | 0.2337 | | 0.2423 | 0.9800 | 3400 | 0.2324 | 0.2324 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1