--- license: cc-by-4.0 tags: - nougat - small - ocr --- # nougat-small onnx https://huggingface.co/facebook/nougat-small but exported to onnx. This is **not quantized**. ```python from transformers import NougatProcessor from optimum.onnxruntime import ORTModelForVision2Seq model_name = 'pszemraj/nougat-small-onnx' processor = NougatProcessor.from_pretrained(model_name) model = ORTModelForVision2Seq.from_pretrained( model_name, provider="CPUExecutionProvider", # 'CUDAExecutionProvider' for gpu use_merged=False, use_io_binding=True ) ``` on colab CPU-only (_at time of writing_) you may get `CuPy` errors, to solve this uninstall it: ```sh pip uninstall cupy-cuda11x -y ``` ## how do da inference? See [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/b46d3e89e631701ef205297435064ab780c4853a/Nougat/Inference_with_Nougat_to_read_scientific_PDFs.ipynb) or [this basic notebook](https://huggingface.co/pszemraj/nougat-small-onnx/blob/main/nougat-small-onnx-example.ipynb) I uploaded. It seems ONNX brings CPU inference times to 'feasible' - it took ~15 mins for _Attention is All You Meme_ on Colab free CPU runtime.