--- license: mit library_name: py-feat pipeline_tag: image-feature-extraction --- # svm_emo ## Model Description svm_emo combines histogram of oriented gradient feature extraction with a linear support vector machine to predict emotional face expressions from single frame images. ## Model Details - **Model Type**: Support Vector Machine (SVM) - **Framework**: sklearn ## Model Sources - **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat) - **Paper**: [Py-feat: Python facial expression analysis toolbox](https://link.springer.com/article/10.1007/s42761-023-00191-4) ## Citation If you use the svm_emo model in your research or application, please cite the following paper: Cheong, J.H., Jolly, E., Xie, T. et al. Py-Feat: Python Facial Expression Analysis Toolbox. Affec Sci 4, 781–796 (2023). https://doi.org/10.1007/s42761-023-00191-4 ``` @article{cheong2023py, title={Py-feat: Python facial expression analysis toolbox}, author={Cheong, Jin Hyun and Jolly, Eshin and Xie, Tiankang and Byrne, Sophie and Kenney, Matthew and Chang, Luke J}, journal={Affective Science}, volume={4}, number={4}, pages={781--796}, year={2023}, publisher={Springer} } ``` ## Example Useage ```python import numpy as np from skops.io import dump, load, get_untrusted_types from huggingface_hub import hf_hub_download class EmoSVMClassifier: def __init__(self, **kwargs) -> None: self.weights_loaded = False def load_weights(self, scaler_full=None, pca_model_full=None, classifiers=None): self.scaler_full = scaler_full self.pca_model_full = pca_model_full self.classifiers = classifiers self.weights_loaded = True def pca_transform(self, frame, scaler, pca_model, landmarks): if not self.weights_loaded: raise ValueError('Need to load weights before running pca_transform') else: transformed_frame = pca_model.transform(scaler.transform(frame)) return np.concatenate((transformed_frame, landmarks), axis=1) def detect_emo(self, frame, landmarks, **kwargs): """ Note that here frame is represented by hogs """ if not self.weights_loaded: raise ValueError('Need to load weights before running detect_au') else: landmarks = np.concatenate(landmarks) landmarks = landmarks.reshape(-1, landmarks.shape[1] * landmarks.shape[2]) pca_transformed_full = self.pca_transform(frame, self.scaler_full, self.pca_model_full, landmarks) emo_columns = ["anger", "disgust", "fear", "happ", "sad", "sur", "neutral"] pred_emo = [] for keys in emo_columns: emo_pred = self.classifiers[keys].predict(pca_transformed_full) pred_emo.append(emo_pred) pred_emos = np.array(pred_emo).T return pred_emos # Load model and weights emotion_model = EmoSVMClassifier() model_path = hf_hub_download(repo_id="py-feat/svm_emo", filename="svm_emo_classifier.skops") unknown_types = get_untrusted_types(file=model_path) loaded_model = load(model_path, trusted=unknown_types) emotion_model.load_weights(scaler_full=loaded_model.scaler_full, pca_model_full=loaded_model.pca_model_full, classifiers=loaded_model.classifiers) # Test model frame = "path/to/your/test_image.jpg" # Replace with your loaded image landmarks = np.array([...]) # Replace with your landmarks data pred = emotion_model.detect_emo(frame, landmarks) print(pred) ```