--- language: zh-CN datasets: - aishell1 metrics: - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 - Chinese (zh-CN), by Yue Qin results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: AISHELL-1 zh-CN type: aishell1 args: zh-CN metrics: - name: Test CER type: cer value: 7.04 --- # Wav2Vec2-Large-XLSR-53-Chinese-zh-CN-aishell1 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese using the [AISHELL-1](https://github.com/kaldi-asr/kaldi/tree/master/egs/aishell). When using this model, make sure that your speech input is sampled at 16kHz. **Test Result**: In the table below I report the Character Error Rate (CER) of the model. I ran the evaluation script described above. | Model | CER | CER-with-LM | | ------------- | ------------- | ------------- | | qinyue/wav2vec2-large-xlsr-53-chinese-zn-cn-aishell1 | **7.04%** | **3.96%** |