--- language: ja datasets: - common_voice - jsut metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Japanese XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ja type: common_voice args: ja metrics: - name: Test WER type: wer value: 51.72 - name: Test CER type: cer value: 24.89 --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), and JSUT dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python !pip install torchaudio !pip install datasets transformers !pip install jiwer !pip install mecab-python3 !pip install unidic-lite !python -m unidic download !pip install jaconv import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import MeCab from jaconv import kata2hira from typing import List # Japanese preprocessing tagger = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\。\、\「\」\,\?\.\!\-\;\:\"\“\%\‘\”\�]' def text2kata(text): node = tagger.parseToNode(text) word_class = [] while node: word = node.surface wclass = node.feature.split(',') if wclass[0] != u'BOS/EOS': if len(wclass) <= 6: word_class.append((word)) elif wclass[6] == None: word_class.append((word)) else: word_class.append((wclass[6])) node = node.next return ' '.join(word_class) def hiragana(text): return kata2hira(text2kata(text)) test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") resampler = torchaudio.transforms.Resample(48_000, 16_000) # JSUT is already 16kHz # resampler = torchaudio.transforms.Resample(16_000, 16_000) # JSUT is already 16kHz processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model.to("cuda") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = hiragana(batch["sentence"]).strip() batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) def cer_compute(predictions: List[str], references: List[str]): p = [" ".join(list(" " + pred.replace(" ", ""))).strip() for pred in predictions] r = [" ".join(list(" " + ref.replace(" ", ""))).strip() for ref in references] return wer.compute(predictions=p, references=r) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer_compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 51.72 % ## Training The privately collected JSUT Japanese dataset was used for training.