--- language: - ru tags: - causal-lm - text-generation license: - apache-2.0 inference: false widget: - text: "Как обрести просветление?" example_title: "Википедия" --- # RuGPT3Medium-tathagata ## Model description This is the model for text generation for Russian based on [rugpt3medium_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2). ## Intended uses & limitations Тhis model was trained and run to generate text on RTX 3080 #### How to use ```python from transformers import GPT2LMHeadModel, GPT2Tokenizer import torch DEVICE = torch.device("cuda:0") model_name_or_path = "radm/rugpt3medium-tathagata" tokenizer = GPT2Tokenizer.from_pretrained("sberbank-ai/rugpt3medium_based_on_gpt2") model = GPT2LMHeadModel.from_pretrained(model_name_or_path).to(DEVICE) text = "В чем смысл жизни?\n" input_ids = tokenizer.encode(text, return_tensors="pt").to(DEVICE) model.eval() with torch.no_grad(): out = model.generate(input_ids, do_sample=True, num_beams=4, temperature=1.1, top_p=0.9, top_k=50, max_length=250, min_length=50, early_stopping=True, num_return_sequences=3, no_repeat_ngram_size=3 ) generated_text = list(map(tokenizer.decode, out))[0] print() print(generated_text) ``` ## Dataset - Dataset: [tathagata](https://huggingface.co/datasets/radm/tathagata)