--- language: - id license: cc-by-4.0 library_name: nemo datasets: - SQuAD-indonesian-language-(442-Context-Title) thumbnail: null tags: - natural-language-processing - qna - chatbot - bert - Transformer - NeMo - pytorch model-index: - name: nlp_id_qa_bert_base_uncased results: [] --- ## Model Overview This model was built using the NeMo Nvidia BERTQAModel, using the SQuAD v2.0 dataset in Indonesian. ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.nlp as nemo model = nemo_nlp.models.question_answering.qa_bert_model.BERTQAModel.from_pretrained("raihanpf22/nlp_id_qa_bert_base_uncased") ``` ### Transcribing using Python Simply do: ``` eval_device = [config.trainer.devices[0]] if isinstance(config.trainer.devices, list) else 1 model.trainer = pl.Trainer( devices=eval_device, accelerator=config.trainer.accelerator, precision=16, logger=False, ) config.exp_manager.create_checkpoint_callback = False exp_dir = exp_manager(model.trainer, config.exp_manager) output_nbest_file = os.path.join(exp_dir, "output_nbest_file.json") output_prediction_file = os.path.join(exp_dir, "output_prediction_file.json") all_preds, all_nbest = model.inference( "questions.json", output_prediction_file=output_prediction_file, output_nbest_file=output_nbest_file, num_samples=-1, # setting to -1 will use all samples for inference ) for question_id in all_preds: print(all_preds[question_id]) ``` ### Input This model accepts SQuAD Format v2.0 as input. ### Output This model provides output in the form of answers to questions according to the existing context. ## Model Architecture Using an uncased BERT base architecture model. ## Training 50 Epochs, 8 Batch size per GPU, 1 num_layer ### Datasets using SQuAD v2.0 as train data ## Performance test_HasAns_exact = 98.0 test_HasAns_f1 = 98.0465087890625 test_HasAns_total = 100.0 test_NoAns_exact = 0.0 test_NoAns_f1 = 0.0 test_NoAns_total = 0.0 test_exact = 98.0 test_f1 = 98.0465087890625 test_loss = 0.00019806227646768093 test_total = 100.0 ## References [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)