--- license: apache-2.0 language: - en metrics: - accuracy pipeline_tag: text2text-generation tags: - health - FHIR --- # bart-large This model is a fine-tuned version of [bart-large](https://huggingface.co/facebook/bart-large) on a manually created dataset. It achieves the following results on the evaluation set: - Loss: 0.40 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | - | 1.0 | 47 | 4.5156 ... | - | 10 | 490 | 0.4086 ## How to use ```python def generate_text(input_text): # Tokenize the input text input_tokens = tokenizer(input_text, return_tensors='pt') # Move the input tokens to the same device as the model input_tokens = input_tokens.to(model.device) # Generate text using the fine-tuned model output_tokens = model.generate(**input_tokens) # Decode the generated tokens to text output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True) return output_text from transformers import BartForConditionalGeneration # Load the pre-trained BART model from the Hugging Face model hub model = BartForConditionalGeneration.from_pretrained('rasta/BART-FHIR-question') input_text = "List all procedures with reason reference to resource with ID 24680135." output_text = generate_text(input_text) print(output_text) ``` ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1