--- widget: - text: አዲስ አበባ example_title: Example 1 - text: በኢንግሊዝ ፕሪምየር ሊግ example_title: Example 2 - text: ዶናልድ ትራምፕ example_title: Example 3 language: - am metrics: - perplexity library_name: transformers pipeline_tag: text-generation base_model: - meta-llama/Llama-3.2-1B-Instruct --- # Llama-3.2-Amharic-1B This model is a version of Meta's [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) decoder transformer model that was continuously pretrained on an Amharic text corpus. - 16k new amharic tokens were added to the Llama 3.2 tokenizer and the embdedding layer of the model was resized accordingly. - The model was then trained on **300 million tokens** of **Amharic** text. - This is a base model. The Amharic instruction following version is [Llama-3.2-1B-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-1B-Amharic-Instruct) ### How to use First, you need to install the latest version of transformers ``` pip install -Uq transformers ``` You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline llama_am = pipeline( "text-generation", model="rasyosef/Llama-3.2-1B-Amharic", device_map="auto" ) prompt = "በኢንግሊዝ ፕሪምየር ሊግ" llama_am( prompt, max_new_tokens=128, temperature=0.3, do_sample=True, top_k=8, top_p=0.8, repetition_penalty=1.05 ) ``` Output: ```python [{'generated_text': 'በኢንግሊዝ ፕሪምየር ሊግ የ2017/18 የውድድር ዘመን ላይ ተሳታፊ የሆነው ሊቨርፑል ትናንት ምሽት 3 :45 ላይ ከዌስትሀም ዩናይትድ ጋር ባደረገው ጨዋታ በ2 ለ 1 ውጤት ተሸንፏል ።'}] ```