--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: training results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: test args: default metrics: - name: Wer type: wer value: 24.53398954167948 --- # training This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3025 - Wer: 24.5340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3282 | 0.81 | 1000 | 0.3106 | 42.8176 | | 0.1619 | 1.62 | 2000 | 0.2932 | 27.0624 | | 0.0531 | 2.43 | 3000 | 0.2985 | 25.3645 | | 0.0208 | 3.24 | 4000 | 0.3025 | 24.5340 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2