--- license: apache-2.0 pipeline_tag: text-generation tags: - finetuned inference: true widget: - messages: - role: user content: What is your favorite condiment? --- # Mistral-7B-Instruct-v0.1 for Flax This is a Flax port of the Mistral-7B-Instruct-v0.1 model. The model is NOT finetuned or altered in any way. It is a direct port of the PyTorch model to Flax using the existing `transformers` model class. ## Quickstart ```python import jax.numpy as jnp import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import FlaxMistralForCausalLM model = FlaxMistralForCausalLM.from_pretrained("rdyro/Mistral-7B-Instruct-v0.1", dtype=jnp.float32) tokenizer = AutoTokenizer.from_pretrained("rdyro/Mistral-7B-Instruct-v0.1") messages = [{"role": "user", "content": "what's your name?"}] input_jax = tokenizer.apply_chat_template(messages, return_tensors="jax") out_jax = model(input_jax) ``` We can compare the outputs to the original PyTorch version. ```python torch_model_id = "mistralai/Mistral-7B-Instruct-v0.1" torch_model = AutoModelForCausalLM.from_pretrained( torch_model_id, device_map="cpu", torch_dtype=torch.float32 ) torch_tokenizer = AutoTokenizer.from_pretrained(torch_model_id) input_pt = torch_tokenizer.apply_chat_template(messages, return_tensors="pt") with torch.no_grad(): out_pt = torch_model(input_pt) err = jnp.linalg.norm(jnp.array(out_pt.logits) - out_jax.logits) / jnp.linalg.norm( jnp.array(out_pt.logits) ) print(f"Error is numerical precision level: {err:.4e}") # prints: Error is numerical precision level: 1.0205e-06 ```

Below is the PyTorch version Model Card.

--- # Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ``` text = "[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen! " "[INST] Do you have mayonnaise recipes? [/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Troubleshooting - If you see the following error: ``` Traceback (most recent call last): File "", line 1, in File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained config, kwargs = AutoConfig.from_pretrained( File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained config_class = CONFIG_MAPPING[config_dict["model_type"]] File "/transformers/models/auto/configuration_auto.py", line 723, in getitem raise KeyError(key) KeyError: 'mistral' ``` Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers This should not be required after transformers-v4.33.4. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.