--- base_model: readerbench/RoBERT-base language: - ro tags: - sentiment - classification - nlp - bert datasets: - decathlon_reviews - cinemagia_reviews metrics: - accuracy - precision - recall - f1 - f1 weighted model-index: - name: ro-sentiment-03 results: - task: type: text-classification # Required. Example: automatic-speech-recognition name: Text Classification # Optional. Example: Speech Recognition dataset: type: ro_sent # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Rommanian Sentiment Dataset # Required. A pretty name for the dataset. Example: Common Voice (French) config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name split: all # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.85 # Required. Example: 20.90 name: Accuracy # Optional. Example: Test WER - type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.85 # Required. Example: 20.90 name: Precision # Optional. Example: Test WER - type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.85 # Required. Example: 20.90 name: Recall # Optional. Example: Test WER - type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.85 # Required. Example: 20.90 name: Weighted F1 # Optional. Example: Test WER - type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.84 # Required. Example: 20.90 name: Weighted F1 # Optional. Example: Test WER - task: type: text-classification # Required. Example: automatic-speech-recognition name: Text Classification # Optional. Example: Speech Recognition dataset: type: laroseda # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: A Large Romanian Sentiment Data Set # Required. A pretty name for the dataset. Example: Common Voice (French) config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name split: all # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.85 # Required. Example: 20.90 name: Accuracy # Optional. Example: Test WER - type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.86 # Required. Example: 20.90 name: Precision # Optional. Example: Test WER - type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.85 # Required. Example: 20.90 name: Recall # Optional. Example: Test WER - type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.84 # Required. Example: 20.90 name: Weighted F1 # Optional. Example: Test WER - type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.84 # Required. Example: 20.90 name: Weighted F1 # Optional. Example: Test WER --- # ro-sentiment-03 This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3923 - Accuracy: 0.8307 - Precision: 0.8366 - Recall: 0.8959 - F1: 0.8652 - F1 Weighted: 0.8287 ### Evaluation on other datasets **SENT_RO** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 (Early stop epoch 3, best epoch 2) ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | 0.4198 | 1.0 | 1629 | 0.3983 | 0.8377 | 0.8791 | 0.8721 | 0.8756 | 0.8380 | | 0.3861 | **2.0** | 3258 | 0.4312 | 0.8429 | 0.8963 | 0.8665 | 0.8812 | **0.8442** | | 0.3189 | 3.0 | 4887 | 0.3923 | 0.8307 | 0.8366 | 0.8959 | 0.8652 | 0.8287 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3