--- base_model: readerbench/RoBERT-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ro-sentiment-03 results: [] --- # ro-sentiment-03 This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3923 - Accuracy: 0.8307 - Precision: 0.8366 - Recall: 0.8959 - F1: 0.8652 - F1 Weighted: 0.8287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | 0.4198 | 1.0 | 1629 | 0.3983 | 0.8377 | 0.8791 | 0.8721 | 0.8756 | 0.8380 | | 0.3861 | 2.0 | 3258 | 0.4312 | 0.8429 | 0.8963 | 0.8665 | 0.8812 | 0.8442 | | 0.3189 | 3.0 | 4887 | 0.3923 | 0.8307 | 0.8366 | 0.8959 | 0.8652 | 0.8287 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3