--- license: apache-2.0 tags: - automatic-speech-recognition - whisper - romanian datasets: - readerbench/echo metrics: - wer model-index: - name: whisper-ro results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Echo type: readerbench/echo config: ro metrics: - name: WER type: wer value: 0.08668345828147764 --- # whisper-ro This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [Echo dataset](https://huggingface.co/datasets/readerbench/echo), a large open-source Romanian dataset. | Name | Small | Large-v2 | Fine-tuned small
(this model) | |:------------:|:-----:|:--------:|:-------------------------------------------------:| | Common Voice | 33.2 | 15.8 | 12.2 | | FLEURS | 29.8 | 14.4 | 10.9 | | VoxPopuli | 28.6 | 14.4 | 9.4 | | Echo | >100 | >100 | 8.6 | | RSC | 38.6 | 28.5 | 5.4 | ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 1e-05 - `train_batch_size`: 128 - `eval_batch_size`: 128 - `seed`: 42 - `distributed_type`: multi-GPU - `num_devices`: 2 - `total_train_batch_size`: 256 - `total_eval_batch_size`: 256 - `optimizer`: Adam with betas=(0.9,0.999) and epsilon=1e-08 - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 500 - `num_epochs`: 20.0 - `mixed_precision_training`: Native AMP