--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: validation args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.9632338208775797 --- # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.5562 - Accuracy: 0.9632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5366 | 1.0 | 83 | 2.2424 | 0.8575 | | 1.963 | 2.0 | 166 | 1.6987 | 0.9537 | | 1.7887 | 3.0 | 249 | 1.5562 | 0.9632 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1