--- license: mit base_model: - cahya/distilbert-base-indonesian language: - id --- # Fine-Tuned DistilBERT Indonesia base model ## Model Description This model is fine-tuned model version of the [Distilbert base Indonesian] (https://huggingface.co/cahya/distilbert-base-indonesian) This model is trained from a dataset of 10,000 review data on Tokopedia and Shopee on Google Playstore in Indonesian. ## Intended uses & limitations ### How to use You can use this model with the following steps: ```python >>> from transformers import AutoModelForSequenceClassification, AutoTokenizer from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name='rfahlevih/fine-tuned-cahya-distilbert-base-indonesia-reviews' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text = "Isi dengan sentimen apa saja." inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) logits = outputs.logits predicted_class = logits.argmax(dim=-1).item() sentiment = "Negative" if predicted_class == 0 else "Positive" print(f"Predicted class: {predicted_class}\nSentimen: {sentiment}") ```