--- tags: - coffee - cherry count - yield estimate - ultralyticsplus - yolov8 - ultralytics - yolo - vision - object-detection - pytorch library_name: ultralytics library_version: 8.0.75 inference: false datasets: - rgautron/croppie_coffee model-index: - name: rgautron/croppie_coffee results: - task: type: object-detection dataset: type: rgautron/croppie_coffee name: croppie_coffee split: val metrics: - type: precision # substitute for mAP@0.5 value: 0.691 name: mAP@0.5(box) --- ### General description Ultralytics' Yolo V8 medium model fined tuned for coffee cherry detection using the [Croppie coffee dataset](https://huggingface.co/datasets/rgautroncgiar/croppie_coffee_split). ![](images/annotated_1688033955437_.jpg) **Note: the low visibility/unsure class was not used for model fine tuning** The predicted numerical classes correspond to the following cherry types: ``` {0: "dark_brown_cherry", 1: "green_cherry", 2: "red_cherry", 3: "yellow_cherry"} ``` ### Repository structure ``` . ├── images │   ├── 1688033955437.jpg # image for test │   └── annotated_1688033955437_.jpg ├── model_v3_202402021.pt # fine tuning of Yolo v8 ├── README.md └── scripts ├── render_results.py # helper function to annotate predictions ├── requirements.txt # pip requirements └── test_script.py # test script ``` ### Demonstration Assuming you are in the ```scripts``` folder, you can run ```python3 test_script.py```. This script saves the annotated image in ```../images/annotated_1688033955437.jpg```. Make sure that the Python packages found in ```requirements.txt``` are installed. In case they are not, simply run ```pip3 install -r requirements.txt```.