--- base_model: - rhymes-ai/Aria license: apache-2.0 base_model_relation: quantized --- This repository offers int8 quantized weights of the [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) model utilizing the [TorchAO](https://github.com/pytorch/ao) quantization framework. It now supports inference within 30GB of GPU memory. ## Quick Start ### Installation ``` pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torch==2.5.0 torchao==0.6.1 torchvision requests Pillow pip install flash-attn --no-build-isolation ``` ### Inference ```python import requests import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor model_id_or_path = "rhymes-ai/Aria-torchao-int8wo" model = AutoModelForCausalLM.from_pretrained( model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, attn_implementation="flash_attention_2", ) processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" image = Image.open(requests.get(image_path, stream=True).raw) messages = [ { "role": "user", "content": [ {"text": None, "type": "image"}, {"text": "what is the image?", "type": "text"}, ], } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=text, images=image, return_tensors="pt") inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16): output = model.generate( **inputs, max_new_tokens=500, stop_strings=["<|im_end|>"], tokenizer=processor.tokenizer, do_sample=True, temperature=0.9, ) output_ids = output[0][inputs["input_ids"].shape[1] :] result = processor.decode(output_ids, skip_special_tokens=True) print(result) ```