--- library_name: transformers license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: cidaut_version_1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # cidaut_version_1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0103 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9524 | 5 | 0.5816 | 0.6790 | | 0.578 | 1.9048 | 10 | 0.2481 | 0.9506 | | 0.578 | 2.8571 | 15 | 0.0853 | 0.9877 | | 0.1389 | 4.0 | 21 | 0.0528 | 0.9877 | | 0.1389 | 4.9524 | 26 | 0.0357 | 0.9877 | | 0.0891 | 5.9048 | 31 | 0.0606 | 0.9815 | | 0.0891 | 6.8571 | 36 | 0.0949 | 0.9753 | | 0.1003 | 7.6190 | 40 | 0.0103 | 1.0 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3