--- library_name: transformers license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: pre_CIDAUTv4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9917695473251029 --- # pre_CIDAUTv4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0177 - Accuracy: 0.9918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8889 | 4 | 0.6742 | 0.5679 | | No log | 2.0 | 9 | 0.3347 | 0.9218 | | 0.6003 | 2.8889 | 13 | 0.1238 | 0.9753 | | 0.6003 | 4.0 | 18 | 0.1298 | 0.9465 | | 0.199 | 4.8889 | 22 | 0.0360 | 0.9877 | | 0.199 | 6.0 | 27 | 0.1049 | 0.9671 | | 0.0832 | 6.8889 | 31 | 0.0058 | 1.0 | | 0.0832 | 8.0 | 36 | 0.0138 | 0.9918 | | 0.0438 | 8.8889 | 40 | 0.0177 | 0.9918 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0