--- license: apache-2.0 tags: - generated_from_trainer datasets: - big_patent model-index: - name: led-base-16384-finetuned-big_patent results: [] --- # led-base-16384-finetuned-big_patent This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 2.5094 - Rouge2 Precision: 0.128 - Rouge2 Recall: 0.1325 - Rouge2 Fmeasure: 0.125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 2.6657 | 0.4 | 500 | 2.6048 | 0.1211 | 0.131 | 0.121 | | 2.6099 | 0.8 | 1000 | 2.5094 | 0.128 | 0.1325 | 0.125 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1