--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-3e-05-bs-2-maxep-6 results: [] --- # bart-abs-1509-0313-lr-3e-05-bs-2-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3486 - Rouge/rouge1: 0.4705 - Rouge/rouge2: 0.2108 - Rouge/rougel: 0.3877 - Rouge/rougelsum: 0.3894 - Bertscore/bertscore-precision: 0.8936 - Bertscore/bertscore-recall: 0.8936 - Bertscore/bertscore-f1: 0.8934 - Meteor: 0.4277 - Gen Len: 38.4091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 1.1204 | 1.0 | 434 | 2.2199 | 0.4542 | 0.2173 | 0.3843 | 0.3855 | 0.8945 | 0.8893 | 0.8917 | 0.4072 | 37.2273 | | 0.8222 | 2.0 | 868 | 2.3549 | 0.4613 | 0.2095 | 0.3935 | 0.3957 | 0.8994 | 0.8929 | 0.896 | 0.4089 | 36.8818 | | 0.565 | 3.0 | 1302 | 2.6652 | 0.4686 | 0.2079 | 0.3905 | 0.3911 | 0.8943 | 0.8941 | 0.894 | 0.4207 | 39.6636 | | 0.379 | 4.0 | 1736 | 2.9239 | 0.4614 | 0.2076 | 0.3937 | 0.3951 | 0.8962 | 0.8898 | 0.8928 | 0.401 | 34.8545 | | 0.2543 | 5.0 | 2170 | 3.1849 | 0.4629 | 0.2086 | 0.3988 | 0.3998 | 0.8958 | 0.8914 | 0.8935 | 0.4076 | 36.1091 | | 0.1761 | 6.0 | 2604 | 3.3486 | 0.4705 | 0.2108 | 0.3877 | 0.3894 | 0.8936 | 0.8936 | 0.8934 | 0.4277 | 38.4091 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1