--- datasets: - roneneldan/TinyStories --- Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759 Based on GPT-Neo architecture. License: mit --- hyperparams used to train this model: lr = 5e-4, lr_schedule = constant, wd=0.1, adam_beta1=0.9, adam_beta2 = 0.95, context_length=512, batch_size=80, gradient_accumulation_steps=16 ------ EXAMPLE USAGE --- ``` from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M') tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") prompt = "Once upon a time there was" input_ids = tokenizer.encode(prompt, return_tensors="pt") # Generate completion output = model.generate(input_ids, max_length = 1000, num_beams=1) # Decode the completion output_text = tokenizer.decode(output[0], skip_special_tokens=True) # Print the generated text print(output_text) ```