import torch from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from peft import PeftModel, PeftConfig # get dtype dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 class EndpointHandler: def __init__(self, path=""): config = PeftConfig.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, path) if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" # load the model # tokenizer = AutoTokenizer.from_pretrained(path) # model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype) # create inference pipeline self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # pass inputs with all kwargs in data if parameters is not None: prediction = self.pipeline(inputs, **parameters) else: prediction = self.pipeline(inputs) # postprocess the prediction return prediction